A Review of Analytical Methods for Clopidogrel Bisulfate
Aakanksha C. Kumbhar, Prerana B. Gherade, Sandhyarani S. Sonkamble, Kumudini R. Pawar
Department of Pharmaceutical Quality Assurance, Abhinav Education Society’s College of Pharmacy, Narhe, Pune – 41, Maharashtra, India.
*Corresponding Author E-mail: kumudiniphd30@gmail.com
ABSTRACT:
The main purpose of the frequently prescribed antiplatelet drug clopidogrel bisulfate is to protect patients with atherosclerosis and acute coronary syndromes from cardiovascular events. Clopidogrel bisulfate analysis must be accurate and trustworthy for clinical research and pharmaceutical quality control. The study thoroughly examines analytical methods, including spectroscopic, bioanalytical, and chromatographic approaches. Each method's benefits, drawbacks, and applications are discussed, offering helpful insights into how well they work for various analytical goals. Due to their excellent sensitivity, selectivity, and precision, chromatographic methods like high-performance liquid chromatography (HPLC) have been the most widely used technique for clopidogrel bisulfate analysis. The creation of various stationary phases and mobile phases has improved separation efficiency and increased the precision of drug quantification. Clopidogrel bisulfate has been extensively determined in pharmaceutical formulations and biological samples using spectroscopic techniques, such as UV-visible spectrophotometry, infrared spectroscopy (IR), and nuclear magnetic resonance (NMR) spectroscopy. These techniques provide quick analysis and straightforward sample preparation steps. Bioanalytical plans, including substance-causing chemicals to split into simpler substances-linked immunosorbent assays (ELISA) and liquid chromatography-bulk spectrometry (LC-MS), are necessary for the measurement of clopidogrel bisulfate in organic casts, such as red body fluid or excretion, in pharmacokinetic and bioequivalence studies. The variety of examining methods debated in this place will aid in selecting the ultimate appropriate method for specific examining necessities, eventually providing the safe and productive use of clopidogrel bisulfate in dispassionate practice.
KEYWORDS: Clopidogrel Bisulfate, UV-Visible Spectroscopy, RP-HPLC, HPTLC, Bio Analytical Methods, LC-MS.
INTRODUCTION:
Clopidogrel Bisulfate is a thienopyridine class inhibitor of P2Y12 ADP platelet receptor. Chemically it is methyl (+) -(S)-α-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c] pyridine-5 (4H)-acetate sulfate (1:1). The empirical formula of clopidogrel bisulfate is C16H16CINO2S•H2SO4 and its molecular weight is 419.9.1
Clopidogrel bisulfate (Plavix) is an anti-platelet drug, that is, a drug that inhibits the ability of platelets to clump together as part of a blood clot. Clopidogrel prevents blood clots by irreversibly binding to the P2Y12 receptor on platelets, preventing adenosine diphosphate (ADP) from activating platelets.2 It belongs to a class of drugs called P2Y12 inhibitors. Clopidogrel is used for preventing strokes, heart attacks, and death in individuals who have had a previous stroke, unstable angina, and peripheral arterial disease (PDA).3
Figure 1: Chemical structure of Clopidogrel bisulfate.
Mechanism of action:
Clopidogrel is metabolized to its active form by carboxylesterase 1. The active form is a platelet inhibitor that irreversibly binds to P2Y12 ADP receptors on platelets. This binding prevents ADP binding to P2Y12 receptors, activation of the glycoprotein GPIIb/IIIa complex, and platelet aggregation.4
Analytical techniques in pharmaceutical analysis:
Numerous analytical techniques, including UV/Visible Spectrophotometry (UV)5,6, High-Performance liquidchromatography (HPLC)7, Ultra high-performance liquid chromatography(UPLC)8, High-performance thin layer chromatography (HPTLC)9,10,11,12, Bio-analytical studies13, Mass spectrometry (MS)14,15,16, Nuclear Magnetic Resonance (NMR)17, Fourier Transform Infrared (FTIR) spectroscopy18,19,20 were identified in the literature for the estimation of Clopidogrel Bisulfate in bulk and pharmaceutical formulations as well as in biological samples.21
Summary of analytical methods for Clopidogrel Bisulfate:
Table 1: Analytical method development and validation of Clopidogrel bisulfate by UV-visible spectrophotometric.
|
Sr. No. |
Drug/Drugs |
Method |
Description |
Ref. No. |
|
1 |
Clopidogrel bisulfate and Aspirin |
First order derivative spectroscopy |
Wavelength: Aspirin: 232.5nm, Clopidogrel: 211.3nm Mobile phase: Methanol and 0.1 N HCl Linearity range:5.0 μg/ml to 25.0 μg/ml Correlation coefficient: r2<1 |
22 |
|
2 |
Clopidogrel bisulfate and Rosuvastatin calcium |
First order derivative spectroscopy |
Wavelength: Rosuvastatin calcium: 243nm, Clopidogrel: 219nm Mobile phase: Methanol Linearity range:2- 10 ug/ml Correlation coefficient: 0.9995 |
23 |
|
3 |
Clopidogrel bisulfate, Atorvastatin and Aspirin |
First derivative spectrophotometry and multicomponent spectrophotometry for simultaneous estimation in capsule dosage formed |
Wavelengths: First derivative; Atorvastatin: 276nm, Clopidogrel: 226nm, Aspirin: 222nm Multicomponent Amplitudes: Atorvastatin: 247nm, Clopidogrel: 220nm, Aspirin: 235nm Mobile phase: Methanol Correlation coefficient: 0.998 |
24 |
|
4 |
Clopidogrel bisulfate and Aspirin |
Spectrophotometric simultaneous determination in combined tablet dosage form by ratio derivative and AUC method |
Wavelengths: Second derivative: Aspirin: 218.11nm, Clopidogrel: 247.002nm Area Under Curved: Clopidogrel: 215.66-218.78 nm, Aspirin: 235.15-238.27nm Mobile phase: Methanol |
25 |
|
5 |
Clopidogrel bisulfate and Rosuvastatin calcium |
Simultaneous estimation
|
Wavelength: Rosuvastatin calcium: 243nm, Clopidogrel: 220nm Mobile phase: Methanol Linearity range: Rosuvastatin: 2- 10 μgmL-1, Clopidogrel: 6-14 μgmL-1 Correlation coefficient: 0.998 |
26 |
|
6 |
Clopidogrel bisulfate and Metoprolol |
Simultaneous estimation
|
Wavelength: Metoprolol: 220nm, Clopidogrel: 271nm Mobile phase: Dis. Water Linearity range: Metoprolol: 4-30 μgmL-1, Clopidogrel: 5-90 μgmL-1 Correlation coefficient: 0.997 |
27 |
|
7 |
Clopidogrel bisulfate, Aspirin |
Second derivative spectrophotometric method |
Wavelengths: Second derivative: Aspirin: 216nm, Clopidogrel: 254nm Linearity range:5-30 ug/ml Mobile phase: Methanol |
28 |
|
8 |
Clopidogrel bisulfate and Aspirin |
First derivative spectroscopy method |
Wavelengths: Aspirin: 271.5nm, Clopidogrel: 242.4nm Mobile phase: Methanol Correlation coefficient: 0.999 |
29 |
|
9 |
Clopidogrel bisulfate and Irbesartan
|
Simultaneous estimation
|
Wavelength: Irbesartan: 250nm, Clopidogrel: 220nm Mobile phase: Dis. Water Linearity range: 10-50ug/ml Correlation coefficient: 0.996-0.998 |
30 |
|
10 |
Clopidogrel bisulfate and Amlodipine besylat |
Simultaneous estimation in bulk tablet dosage form |
Wavelength: Simultaneous estimation method; Amlodipine besylate: 360nm, Clopidogrel bisulfate: 270nm Mobile phase: Dis. Water Linearity range: 5-54ug/ml Correlation coefficient: 0.999 |
31 |
|
11 |
Clopidogrel bisulfate |
Spectrophotometric Method |
Wavelength: Clopidogrel: 407nm Mobile phase: Dis. Water and ethyl alcohol Correlation coefficient: 0.996 |
32 |
|
12 |
Rosuvastatin calcium and Clopidogrel bisulfate |
Simultaneous estimation in bulk and formulation |
Wavelength: Simultaneous equation method: Rosuvastatin calcium: 243nm, Clopidogrel: 230nm Absorbance ratio method:Iso-absorptive point: 227 nm, Absorption maxima of Rosuvastatin: 243nm Mobile phase: Dis water and urea 2M. Linearity range: Rosuvastatin: 2- 10 μgmL-1 Clopidogrel: 5-25 μgmL-1 |
33 |
|
13 |
Clopidogrel bisulfate and Rivaroxaban |
Simultaneous estimation in their binary determination |
Wavelength: First derivative spectrophotometric method Rivaroxaban: 289nm, Clopidogrel: 249.5 nm Ratio derivative spectrophotometric method: Rivaroxaban: 256nm, Clopidogrel: 214.5nm Mobile phase: Methanol Linearity range: Rosuvastatin: 2-20 μgmL-1 Clopidogrel: 5-60 μgmL-1 Correlation coefficient: 0.999 |
34 |
|
14 |
Clopidogrel bisulfate, Rosuvastatin and Aspirin |
Simultaneous Estimation in pharmaceutical dosage formed |
Wavelength: Rosuvastatin: 24.56nm, Aspirin: 276.44nm, Clopidogrel: 223.38nm Mobile phase: Methanol Correlation coefficient: 0.9998 Linearity range: Rosuvastatin: 1-5 ug/ml, Aspirin: 7.5 37.5 ug/ml, Clopidogrel: 7.5-37.5 ug/ml |
35 |
|
15 |
Clopidogrel bisulfate |
Spectrophotometric determination in bulk dosage formed |
Wavelength: Clopidogrel: 203nm Mobile phase: Methanol Linearity range:1-2.6 ug/ml Correlation coefficient: 0.9929 |
36 |
Table 2: Analytical method development and validation of Clopidogrel bisulfate by RP-HPLC and UPLC.
|
Sr. No. |
Drug/Drugs |
Method |
Description |
Ref. No. |
|
1 |
Clopidogrel bisulfate |
RP-HPLC method development in tablet dosage form |
Wavelength: 240nm [UV detector] Mobile phase: Acetonitrile: Methanol: Phosphate buffer (0.1 pH) Ratio: 80:10:10 (v/v/v) Flow rate: 0.9 ml/min |
37 |
|
2 |
Clopidogrel bisulfate, Its Carboxylic Acid Metabolite, and Atorvastatin
|
Simultaneous quantification in human plasma: application to a pharmacokinetic study |
Wavelength: 220nm [PDA detector] Mobile phase: Acetonitrile: Methanol: Phosphoric acid buffer (2.6 pH) Flow rate: 1 ml/min |
38 |
|
3 |
Aspirin, Rosuvastatin and Clopidogrel
|
Stability indicating RP-HPLC methodin bulk and pharmaceutical dosage form.
|
Wavelength: 237nm [UV-visible detector] Mobile phase: Acetonitrile: Water (2.51 pH) with 0.1 % (v/v) orthophosphoric acid Ratio: 50:50 v/v Flow rate: 1 ml/min |
39 |
|
4 |
Clopidogrel Bisulfate |
Stability-indicating method and accelerated stability studies for osmotic and pulsatile tablet formulations of
|
Wavelength: 222nm [UV-visible detector] Mobile phase: Acetonitrile:0.1% formic acid Ratio: 60:40 v/v Flow rate: 1 ml/min Retention time: 5.9 min |
40 |
|
5 |
Clopidogrel, Aspirin and Atorvastatin |
Liquid chromatographic method for simultaneous quantitation in rat plasma: application to the pharmacokinetic study |
Wavelength: 232nm [UV-visible detector] Mobile phase: Acetonitrile: Phosphate buffer (pH 3) Ratio: Gradient ratio Flow rate: 1 ml/min Retention time: 5.9 min |
41 |
|
6 |
Clopidogrel Bisulfate |
RP-HPLC |
Wavelength: 220nm [SPD 20A UV-visible detector] Mobile phase: Potassium dihydrogen orthophosphate buffer (pH 4): Acetonitrile Ratio: 32:68 Flow rate: 1 ml/min Retention time: 3.847 min |
42 |
|
7 |
Clopidogrel Bisulfate and Aspirin |
Stability indicating RP-HPLC method |
Wavelength: 220nm [UV-visible detector] Mobile phase: Buffer: Acetonitrile Ratio: 650:350 v/v Flow rate: 1.3 ml/min Retention time: Aspirin: 4.299 min, Clopidogrel: 12.706 min |
43 |
|
8 |
Aspirin, Clopidogrel and Rosuvastatin |
Simultaneous estimation in pharmaceutical dosage form
|
Wavelength: 242nm [UV-visible detector] Mobile phase:KH2PO4 buffer (pH-6.0): Acetonitrile Ratio: 60:40 v/v Flow rate: 1 ml/min Retention time: Aspirin: 3.103 min, Clopidogrel: 4.277 min, Rosuvastatin: 5.707 min |
44 |
|
9 |
Aspirin, Clopidogrel bisulfate and Rosuvastatin Calcium |
RP-HPLC in fixed-dose combination capsules
|
Wavelength: 230nm Mobile phase: Phosphate buffer (pH 3): Acetonitrile Flow rate: 1.2 ml/min Retention time: Aspirin: 3.2 min, Clopidogrel: 12.8 min, Rosuvastatin: 4.7min |
45 |
|
10 |
Acetylsalicylic Acid and Clopidogrel bisulfate |
in vitro dissolution study: RP-HPLC method for simultaneous analysis
|
Wavelength: 240nm [UV detection] Mobile phase: Phosphate buffer (pH 3): Acetonitrile: Methanol |
46 |
|
11 |
Acetylsalicylic Acid and Clopidogrel bisulfate
|
Development and validation of an LC method for combined oral dosage form
|
Wavelength: 220nm Mobile phase: Gradient mixture: A: 5:95 v/v mix of Methanol and 1 g/L solution of Sodium octane sulfonate monohydrate (pH 2.5) B: 5:95 v/v mixture of Methanol and Acetonitrile |
47 |
|
12 |
Clopidogrel, Aspirin and Omeprazole |
Stability-indicating UFLC method for uncoupling and estimation of impurities in their tablet dosage form using PDA detection |
Wavelength: 237 nm: Aspirin and its impurities and for the impurity C of Clopidogrel; 254 nm: Clopidogrel and its impurities except for impurity C; 280 nm for Omeprazole and its impurities Mobile phase:0.01 M Phosphate buffer (pH 2): Acetonitrile Flow rate: 1.2 ml/min |
48 |
|
13 |
Clopidogrel bisulfate and Aspirin |
RP-HPLC method |
Wavelength: 240nm Mobile phase: Acetonitrile:50 mM Potassium dihydrogen phosphate buffer: Methanol (pH 3) Ratio: 50:30:20 v/v Flow rate: 1.5 ml/min Retention time: Clopidogrel bisulfate: 7.47min, Aspirin: 2.2 min Linearity: Clopidogrel bisulfate: 1.5-7.5, Aspirin: 3.5-15.0 μg/ml |
49 |
|
14 |
Clopidogrel bisulfate |
Validation of assay for some tablet forms by RP-HPLC liquid chromatography |
Wavelength: 225 nm Mobile phase: Phosphate buffer (pH 2.85): Acetonitrile Ratio: 35:65 v/v Flow rate: 1 ml/min Retention time: 7.48 min Linearity: 10-60 ug/ml |
50 |
|
15 |
Clopidogrel bisulfate |
Stability indicating method development and validation |
Wavelength: 225 nm Mobile phase: Water (pH 3.0): Methanol Ratio: 20:80 v/v Flow rate: 1.0 ml/min Retention time: 4.388 min Linearity: 45-120ug/ml |
51 |
|
16 |
Clopidogrel and Aspirin |
Simultaneous determination by RP-HPLC from bulk material and dosage formulations using multivariate calibration technique |
Wavelength: 225, 230, 235, 240, and 245nm Mobile phase: Methanol: Water (pH 3.4) Ratio: 80:20 v/v Flow rate: 1 ml/min |
52 |
|
17 |
Clopidogrel bisulfate |
RP-HPLC assay |
Wavelength: 247nm Mobile phase:50 mM Potassium di-hydrogen phosphate (pH 3.0): Acetonitrile Ratio: 75:25 v/v Flow rate: 1.0 ml/min Retention time: 6.5 min |
53 |
|
18 |
Clopidogrel bisulfate |
Separation and determination of process-related impurities by RP-HPLC |
Wavelength: 220nm Mobile phase: Potassium dihydrogen phosphate buffer (pH 3.5): Acetonitrile Ratio: 78:22 v/v Flow rate: 1.0 ml/min |
54 |
|
19 |
Clopidogrel bisulfate |
RP-HPLC method |
Wavelength: 222 nm (UV detection) Mobile phase: Methanol: Water Ratio: 70:30 v/v Flow rate: 1.0 ml/min Retention time: 3.45 min |
55 |
|
20 |
Clopidogrel bisulfate and Rivaroxaban |
Simultaneous estimation RP-HPLC method |
Wavelength: 220nm Mobile phase: Buffer (0.05M KH2PO4 of pH 4.0): Methanol Ratio: 30:70 v/v Flow rate: 1 ml/min Retention time: Rivaroxaban: 4.04 min, Clopidogrel: 2.39 min |
56 |
|
21 |
Clopidogrel bisulfate and Rosuvastatin Calcium |
Simultaneous estimation in pharmaceutical dosage form by RP-HPLC |
Wavelength: 240 nm Mobile phase: Buffer (pH 3.0): Methanol Ratio: 20:80 v/v Flow rate: 1 ml/min Retention time: Rosuvastatin calcium: 2.844 min, Clopidogrel: 4.388 min Linearity: Rosuvastatin calcium: 6-16 µg/ml, Clopidogrel: 45-120 µg/m |
57 |
|
22 |
Aspirin and Clopidogrel bisulfate |
Ion-pairing RP-HPLC method for simultaneous determination in tablet and capsule dosage forms
|
Wavelength: 240nm Mobile phase: Acetonitrile: 0.01M TBAHS Ratio:50:50% v/v Flow rate: 1 ml/min Retention time: Aspirin: 3.167 min, Clopidogrel: 5.758 min Linearity: Aspirin: 1-250 μg/ml, Clopidogrel: 0.5-125 μg/ml |
58 |
|
23 |
Clopidogrel and Rosuvastatin |
Stability indicating liquid chromatographic method development and validation in bulk and tablet dosage formed |
Wavelength: 270nm (UV detector) Mobile phase: Methanol and Water Ratio: 50:50 v/v Flow rate: 1 ml/min Retention time: Rosuvastatin calcium: 5 min, Clopidogrel: 3.3 min Linearity: Rosuvastatin: 10-50 μg/ml, Clopidogrel: 5-25 μg/ml |
59 |
|
24 |
Clopidogrel and Aspirin |
Simultaneous estimation RP-HPLC method |
Wavelength: 237nm (Diode array detector) Mobile phase: Acetonitrile: 0.1% (v/v) Orthophosphoric acid Ratio: 40:60 v/v Flow rate: 1.5 ml/min Retention time: Aspirin: 2.78 min, Clopidogrel: 4.99min |
60 |
|
25 |
Clopidogrel and Aspirin |
RP-HPLC method |
Wavelength: 240nm (Diode array detector) Mobile phase: Acetonitrile: Methanol: 20 mM phosphate buffer (pH 3) Ratio: 50:7:43 v/v Flow rate: 1 ml/min Retention time: Aspirin: 2.40 min, Clopidogrel: 9.72min, Linearity: 10-50 µg/ml
|
61 |
|
26 |
Clopidogrel bisulfate |
Stability-indicating liquid chromatography in tablets: Application to content uniformity testing |
Wavelength: 235nm (UV detector) Mobile phase:0.01M Na2HPO4 (pH 4): Acetonitrile Ratio: 80:20 v/v Flow rate: 1 ml/min Retention time: Clopidogrel: 6.84 min, Linearity: 0.2-3.5 µg/ml |
62 |
|
27 |
Clopidogrel bisulfate |
RP-HPLC in bulk and pharmaceutical dosage form |
Wavelength: 224nm (UV detector) Mobile phase: Acetonitrile: Phosphate buffer (pH: 3.0) Ratio: 60:40 % v/v Flow rate: 1 ml/min |
63 |
|
28 |
Clopidogrel bisulfate |
RP-HPLC for pharmaceutical dosage formed |
Wavelength: 220nm (UV detector) Mobile phase: Buffer of ammonium acetate: Acetonitrile Flow rate: 1 ml/min Linearity range: 50-150 ug/ml |
64 |
|
29 |
S(-) Metoprolol Succinate & Clopidogrel bisulfate |
Stability indicating RP-HPLC method |
Wavelength: 220nm (PDA detector) Mobile phase: Methanol: Acetonitrile: Buffer Ratio: 15:40:45 v/v Flow rate: 1.5 ml/min |
65 |
|
30 |
Clopidogrel bisulfate |
Stability indicating RP-HPLC method |
Wavelength: 225nm (UV detector) Mobile phase: Acetonitrile: Tetra butyl Ammonium hydrogen sulfate buffer Flow rate: 1 ml/min Retention time: 4.59 min |
66 |
|
31 |
Clopidogrel bisulfate |
RP-HPLC for pharmaceutical dosage formed |
Wavelength: 220nm (UV detector) Mobile phase: Methanol: water (pH 3.5) Ratio: 95:5 v/v Flow rate: 1 ml/min |
67 |
|
32 |
Clopidogrel bisulfate |
Novel stability indicating RP-HPLC method bulk, and its dosage formed |
Wavelength: 240nm (UV detector) Mobile phase: Acetonitrile: OPA (Ortho phosphoric acid) buffer Ratio: 50:50v/v Flow rate: 1 ml/min Retention time: 2.7 min |
68 |
|
33 |
Clopidogrel and Aspirin |
RP-HPLC method |
Wavelength: 240nm (UV 3000 detector) Mobile phase: Methanol: Water (pH 4) Ratio: 90:10 v/v Flow rate: 1 ml/min Retention time: Aspirin: 4.474 min, Clopidogrel: 5.883 min |
69 |
Table 3: Analytical method development and validation of Clopidogrel bisulfate by HPTLC
|
Sr. No. |
Drug/Drugs |
Method |
Description |
Ref. No. |
|
1 |
Clopidogrel bisulfate |
HPTLC method |
Wavelength: 254nm Solvent: Hexane: Methanol: Chloroform: Ammonia Ratio: 16:2:1.5:0.5 v/v/v/v Linearity: 1-10 ug/ml |
70 |
|
2 |
Clopidogrel bisulfate |
Stability indicating HPTLC determination bulk drug and in pharmaceutical dosage form |
Wavelength: 230nm Solvent: Carbon tetrachloride: Chloroform: Acetone Ratio: 6:4:0.15 v/v/v |
71 |
|
3 |
Clopidogrel bisulfate and Acetylsalicylic Acid |
Simultaneous estimation in powder and tablet form by HPTLC |
Wavelength: 235nm (UV detection Solvent: Ethyl acetate: Methanol: Toluene: Glacial Acetic acid Ratio: 5:1:4:0.1 v/v/v |
72 |
|
4 |
Clopidogrel bisulfate |
HPTLC method |
Wavelength: 230nm Solvent: Carbon tetrachloride: Ethyl acetate: Ammonia Ratio: 5:0.3:0.2 v/v/v Linearity: 300-1500 ng |
73 |
Table 4: Analytical method development and validation of Clopidogrel bisulfate by LC-MS, GC-MS
|
Sr. No. |
Drug/Drugs |
Method |
Description |
Ref. No. |
|
1 |
Clopidogrel bisulfate |
A novel GC-MS method for bulk and pharmaceutical dosage formed |
Carrier gas: Helium Flow rate: 1.27ml/min Retention time: 17.2min Electron impact (EI) ionization at 70 eV |
74 |
|
2 |
Clopidogrel bisulfate |
HPLC–MS/MS method in human plasma
|
Solvent: 50% DMSO Mobile phase: 0.04% Formic acid: 3 mmol/L Ammonium acetate in Acetonitrile/water (65:35 v/v) Electrospray ionization |
75 |
|
3 |
Clopidogrel bisulfate |
LC-MS/MS method for the enantioseparation and determination in beagle plasma and its application to a stereoselective pharmacokinetic study |
Mobile phase: Acetonitrile: Ammonium acetate (10 mM, pH 4.5) Ratio: 22:78v/v Flow rate: 0.3 mL/min. Linearity: 1-800 ng/mL Electrospray ionization |
76 |
|
4 |
Clopidogrel bisulfate |
Clopidogrel carboxylic acid in human plasma using Clopidogrel-D4-carboxylic acid as internal standard Clopidogrel carboxylic acid in human plasma using Clopidogrel-D4-carboxylic acid as internal standard Clopidogrel carboxylic acid in human plasma using Clopidogrel-D4-carboxylic acid as internal standard LC-MS/MS method in human plasma |
Mobile phase: diethyl ether – n-hexane (80:20, v/v) Methanol, de-ionized water and formic acid as a mobile phase at flow rate of 0.5 ml/minute Methanol, de-ionized water and formic acid as a mobile phase at flow rate of 0.5 ml/minute Mobile phase: Methanol: De-ionized water: Formic acid Flow rate: 0.5 ml/min Tandem mass spectrometry |
77 |
|
5 |
Clopidogrel bisulfate |
An LCMS-compatible stability indicating HPLC assay method |
Mobile phase: 0.1 % Trifluoroacetic acid: Acetonitrile Degradation studies: Acidic (0.5 N HCl), Basic (0.1 N sodium hydroxide), Neutral (Water: Acetonitrile mixture 1:1), Oxidative (6 % v/v hydrogen peroxide), Thermal (105 °C) and Photolytic (UV light -254 nm) conditions |
78 |
CONCLUSION:
In conclusion, this comprehensive review highlights the diversity and evolution of analytical methods for clopidogrel bisulfate analysis. Researchers and pharmaceutical professionals can choose the most suitable technique based on their specific analytical objectives, considering sensitivity, accuracy, cost, and sample complexity.
CONFLICT OF INTEREST:
The authors declare no conflicts of interest regarding the publication of this review article.
ACKNOWLEDGEMENTS:
We want to extend our heartfelt gratitude to the Principal of Abhinav Education Society’s, College of Pharmacy (B. Pharm) for their invaluable support and guidance throughout the preparation of this review article.
REFERENCES:
1. Indian Pharmacopoeia Vol. 2[2].
2. Jiang X. Samant S. Lesko LJ. Clinical Pharmacokinetics and Pharmacodynamics of Clopidogrel. Schmidt S. 2015, January 6. https://doi.org/10.1007/s40262-014-0230-6
3. Plavix (Clopidogrel Bisulfate): Uses, Dosage, Side Effects, Interactions, Warning.2022, October 3. https://www.rxlist.com/plavix-drug.htm
4. Beavers CJ. Clopidogrel. 2023, July 10. https://www.ncbi.nlm.nih.gov/books/NBK470539/
5. Abdu HA. High-Performance Liquid Chromatography (HPLC): A review. Annals of Advances in Chemistry. 2022; 6(1): 10–20. https://doi.org/10.29328/journal.aac.1001026
6. Prakash B. Khatmode RB.Shivanjali M., Mane S.Giri T. Pharm M. Performance Liquid Chromatography Technique. IJCRT.org.December 15, 2023. https://ijcrt.org/papers/IJCRT2205570.pdf
7. Attimarad M. Mueen AK. Aldhubaib BE. Harsha S. High-performance thin layer chromatography: A powerful analytical technique in pharmaceutical drug discovery. Pharmaceutical Methods. 2011; 2(2): 71–75.
8. Rashmin P. Mrunali P. Nitin D. Nidhi D. Bharat P. HPTLC method development and validation: Strategy to minimize HPTLC method development and validation: Strategy to minimize methodological failures methodological failures. Journal of Food and Drug Analysis. 2012; 20(4): Article 20. https://doi.org/10.6227/jfda.2012200408
9. Pradip PS. Krunal K. Bioanalytical method development and validation: A review. Humanjournals.com. December 15, 2023, https://ijppr.humanjournals.com/wp-content/uploads/2023/05/27.Pawal-Suvarna-Pradip-Kanase-Krunal.pdf.
10. Noriega P. Gortaire G. Osorio E. Mass spectrometry and its importance for the analysis and discovery of active molecules in natural products. In Natural Drugs from Plants. Intech Open. 2022.
11. Meghal P. Development and Validation of Simultaneous Estimation of Two Catecholamines in Combine Dosage Form by HPTLC Method. Asian J. Pharm. Ana. 2014; 4(2): 57-77
12. Jain V. Jain T. Swarnlata S. HPTLC method for routine quality control of Ayurvedic formulation Drakshadi gutika. Asian J. Pharm. Ana. 2013; 3(4): 111-114
13. Bhole RP.Jagtap SR. Chadar KB. Zambare YB. Liquid chromatography-mass spectrometry technique-A review. Research Journal of Pharmacy and Technology. 2020; 13(1): 505. https://doi.org/10.5958/0974-360x.2020.00097.9
14. Thakur P.Thakur U. Kaushal P.Ankalgi AD. Kumar P. Kapoor A. Singh AM.. A review on GC-MS hyphenated technique. Asian Journal of Pharmaceutical Analysis. 2021: 285–292. https://doi.org/10.52711/2231-5675.2021.00049
15. Schönberger T. Bachmann R. Gerhardt N. Panzer J. Meyer K. Romoth M.Teipel J. Scharinger A.Weber M. Kuballa T. Maiwald M. Esslinger S. Fauhl-Hassek C. Horn B. Riedl J. Becker R. Annweiler E.Meier M. Ohmenhäuser M. Stoyke M. Guide to NMR method development and validation – part I: Identification and Quantification (update 2023).
16. Wikipedia contributors. Fourier-Transform Infrared Spectroscopy. Wikipedia, The Free Encyclopedia. 2023, November 19.
17. https://en.wikipedia.org/w/index.php?title=Fourier-transform_infrared_spectroscopy&oldid=1185833387
18. Fahelelbom KM. Saleh A. Al-Tabakha MMA. Ashames AA. Recent applications of quantitative analytical FTIR spectroscopy in pharmaceutical, biomedical, and clinical fields. Reviews in Analytical Chemistry, 2022; 41(1): 21–33.
19. Fadlelmoula A. Pinho D. Carvalho VH. Catarino SO. Minas G. Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices. Micromachines (Basel). 2022 Jan 26; 13(2): 187. doi: 10.3390/mi13020187. PMID: 35208311; PMCID: PMC8879834.
20. Patel R. Patel C. Rajesh KS. Quantitative Analytical Applications of FTIR Spectroscopy in Pharmaceutical and Allied Areas. Journal of Advanced Pharmacy Education and Research. 4(2): 145-157.
21. Rushikesh MD. Snehal VC. Manoj SC. Rita DC. Dnyaneshwari BS. Potential of FTIR in Pharmaceutical Analysis: A Review. International Journal of Novel Research and Development. 2023; 8(6); 2456-4184.
22. Siddiqui MR. AlOthman ZA. Rahman N. Analytical techniques in pharmaceutical analysis: A review. 2017 May 25; 10: S1409–S1421.
23. Game M. Sakarkar DM. Gabhane KB. Quantitative analysis of clopidogrel bisulphate and aspirin by first derivative spectrophotometric method in tablets. Indian Journal of Pharmaceutical Sciences. 2010; 72(6): 825. https://doi.org/10.4103/0250-474x.84609
24. Kondawar. Manish. Baliram. Pagare. Pravin. Gholase. Ruben. Rukadikar. Simultaneous estimation of rosuvastatin calcium and clopidogrel bisulphate by first-order derivative uv spectrophotometric method. Inventi Rapid: Pharm Analysis & Quality Assurance. 2013.
25. Singh S. Nitin D. Jain D. Simultaneous Estimation of Atorvastatin, Clopidogrel and Aspirin in Capsule Dosage forms using UV-Spectroscopy. Asian J. Res. Chem. 2010. 3.
26. Arun BK. Prachyasuman M. Vishnu P. Choudhari AS. Sutar SC. JagdaleBS. Kuchekar. Spectrophotometric Simultaneous Determination of Clopidogrel and Aspirin in Combined Tablet Dosage Form by Ratio Derivative and Area Under Curve Method. Research J. Pharm. and Tech. 2011; 4 (1): 105-108.
27. Sai C. Reddy K. Tulasi B. VD. Rohini A. Kumari S. Simultaneous estimation of rosuvastatin calcium and clopidogrel bisulphate by UV spectroscopy. Sphinxsai.com. December 5, 2023. https://sphinxsai.com/2013/janmar/chempdf/CT=21(127-130)JM13.pdf
28. Roja, L. A validated UV-Spectrophotometric method for the simultaneous estimation of Clopidogrel and Metoprolol in bulk form. Humanjournals.com. 2017.https://ijppr.humanjournals.com/wp-content/uploads/2017/08/8.Lunavath-Roja.pdf
29. Game MD. Sakarkar DM. Quantitative analysis for clopidogrel bisulphate and aspirin by second derivative spectrophotometric method in pharmaceutical preparation. Sphinxsai.com. December 5, 2023. https://sphinxsai.com/Oct_dec_2010_vol2_no.4/chemTech_vol2_no.4_1_pdf/CT=04(1886-1891).pdf
30. Ruikar DB. Rajput SJ. Simultaneous resolution of clopidogrel bisulphate and aspirin in their combined dosage form by ratio first derivative spectrophotometry. Zenodo.org. December 5, 2023.https://zenodo.org/record/2241931/files/4.pdf
31. Savani P. Chauhan S. JainV. Raj H. Patel S. Development and validation of an analytical method for clopidogrel bisulfate and irbesartan by simultaneous equation spectroscopic method. Pharmaceutical and biological evaluations. April 2016; 3 (2); 215-223
32. Patil LD. Gudi SV. Jadav DD. Kadam YA. Dalvi SD. Ingle PL. Development and validation of UV- UV-spectrophotometric methods for simultaneous estimation of amlodipine besylate and clopidogrel bisulfate in bulk and tablet dosage formed. Scholars Research Library. Der Pharma Chemical. 2013; 5(4); 282-287.
33. Mohamed SH. Issa YM. Salil AI. Quantitative determination of clopidogrel bisulfate using validated spectrophotometric methods.Mbimph.com. December 5, 2023.https://mbimph.com/index.php/AJOAIR/article/download/1546/1478
34. Zalak P. Minal R. Development and validation of UV-spectrophotometric methods for simultaneous estimation of clopidogrel bisulfate and rosuvastatin calcium in bulk and formulation. Journalijar.com. December 5, 2023.http://www.journalijar.com/uploads/11_IJAR-2779.pdf
35. Din M. E. Ibrahim SS. Aziz H. AE. Spectrophotometric methods for simultaneous determination of rivaroxaban and clopidogrel in their binary mixture. Pharmaceutica Analytica Acta. 2017; 09(01);https://doi.org/10.4172/2153-2435.1000575
36. Et Al SRD. Singh RD. YadavH. Hinge M. PatelA. Development and validation of analytical methods for simultaneous estimation of Rosuvastatin, Clopidogrel and Aspirin in pharmaceutical dosage form. Jpsbr.org. 2016. http://www.jpsbr.org/volume_6/JPSBR_Vol_6_Issue_1_htm_files/JPSBR16RS2015.pdf
37. AntypenkoL. Gladysheva S. Vasyuk S. Development and validation of clopidogrel bisulphate determination in bulk by UV spectrophotometric method. Scripta Scientifica Pharmaceutica. 2016b; 3(2), 25. https://doi.org/10.14748/ssp.v3i2.1704
38. Haider S. Al-Khayat MA. Mando H. Development and validation of RP-HPLC method for determination of clopidogrel bisulfate in tablets. International Journal of Pharmaceutical Sciences Reviews and Research. May 2012; 14(2); 1-5.
39. Croitoru O. Spiridon AM. Belu I. Turcu-Ştiolică A. Neamţu J. Development and validation of an HPLC method for simultaneous quantification of clopidogrel bisulfate, its carboxylic acid metabolite, and atorvastatin in human plasma: Application to a pharmacokinetic study. Journal of Analytical Methods in Chemistry. 2015; 1–12. https://doi.org/10.1155/2015/892470
40. PisalP. Nigade G. Kale A. Pawar S. Development and validation of stability indicating RP-HPLC method for simultaneous determination of Aspirin, Rosuvastatin, Clopidogrel in bulk and pharmaceutical dosage form. International Journal of Pharmacy and Pharmaceutical Sciences. 2018; 10(10): 51-56.
41. DeshmukhPR. Gaikwad VL. TamanePK.MahadikKR. PurohitRN. Development of stability-indicating HPLC method and accelerated stability studies for osmotic and pulsatile tablet formulations of Clopidogrel Bisulfate. Journal of Pharmaceutical and Biomedical Analysis. 2019; 165; 346–356. https://doi.org/10.1016/j.jpba.2018.12.020
42. Porwal PK. Ahmad RA. ChhajedSS.ChatpalliwarVA. Liquid chromatographic method for simultaneous quantitation of clopidogrel, aspirin and atorvastatin in rat plasma and its application to the pharmacokinetic study. Journal of Chromatographic Science. 2015; 53(7); 1155–1162. https://doi.org/10.1093/chromsci/bmu210
43. Kaedah P. Terhadap RH. Bisulfat K. DimpleB. Vinodh M. Vinayak M. Development and validation of RP-hplc method for the estimation of clopidogrel bisulphate. Com.My. December 5. 2023. http://mjas.analis.com.my/wp-content/uploads/2018/11/Dimple.pdf
44. Usman S. Akram M. Shah F. KVRNS. Ramesh R. Islam Q. Stability indicating HPLC method for simultaneous assessment of clopidogrel bisulfate and aspirin: Development and validation. International Journal of Pharmaceutical Investigation. 2023; 13(2); 270–278. https://doi.org/10.5530/ijpi.13.2.037
45. Tiwari PKJain A. Dubey BK. Pandey GK. Dhakad S. Analytical method development and validation for the simultaneous estimation of Aspirin, Clopidogrel and Rosuvastatin in pharmaceutical dosage form. Journal of Drug Delivery and Therapeutics. 2019; 9(4-s); 432–438. https://doi.org/10.22270/jddt.v9i4-s.3351
46. Singh R. Khan T. RP-HPLC method development and validation studies for the estimation of aspirin, clopidogrel bisulphate and rosuvastatin calcium in fixed dose combination capsules. Int J Pharm Sci & Res. 2020;11(5); 2366-73. doi: 10.13040/IJPSR.0975-8232.
47. Osmanović Omerdić E. Alagić-Džambić L. Krstić M. Pašić-Kulenović M. Odović J. Vasiljević D. In vitro dissolution study of acetylsalicylic acid and clopidogrel bisulfate solid dispersions: Validation of the RP-HPLC method for simultaneous analysis. Applied Sciences (Basel, Switzerland). 2020; 10(14); 4792. https://doi.org/10.3390/app10144792
48. Kahsay G. Development and validation of a liquid chromatographic method for purity control of clopidogrel–acetylsalicylic acid in combined oral dosage forms. Journal of Pharmaceutical and Biomedical Analysis. 2012.
49. Nagavi JB. GurupadayyaB. Nagavi B. Stability-indicating UFLC method for uncoupling and estimation of impurities in clopidogrel, aspirin and omeprazole in their tablet dosage form using PDA detection. Sbmu. Ac. Ir. December 5. 2023.https://journals.sbmu.ac.ir/index.php/ijps/article/download/40777/30427
50. Shrivastava PK. Basniwa PK. Jain D. Shrivastava SK. Concurrent estimation of clopidogrel bisulfate and aspirin in tablets by validated RP-HPLC method. Indian Journal of Pharmaceutical Sciences. 2008; 70(5); 667. https://doi.org/10.4103/0250-474x.45414
51. Sahoo NK.Sahu M. Rao PS. Indira JN. Rani SN. Ghosh GK. Validation of assay for bulk clopidogrel and for some tablet forms by reverse-phase high-performance liquid chromatography. Journal of Taibah University for Science: JTUSCI. 2014; 8(4); 331–336. https://doi.org/10.1016/j.jtusci.2014.02.001
52. Pimpale AD. Kakde RB. Stability-indicating method development and validation for estimation of clopidogrel bisulfate in pharmaceutical dosage form by reverse-phase high-performance liquid chromatography. Asian Journal of Pharmaceutical Research. 2020; 10(4); 253–259. https://doi.org/10.5958/2231-5691.2020.00044.
53. SultanaN. Arayne MS. Ali KA. NawazM. Simultaneous determination off clopidogrel and aspirin by RP-HPLC from bulk material and dosage formulations using multivariate calibration technique. Oup.com. 2011. https://academic.oup.com/chromsci/article-pdf/49/2/165/982802/49-2-165.pdf
54. Housheh S.Ali D. Trefi S. Mohamma H. Chehna MF. Optimization of RP-HPLC assay for pharmaceutical analysis of clopidogrel. International Journal of Pharmaceutical Sciences and Nanotechnology. 2014; 7(1); 2371–2376. https://doi.org/10.37285/ijpsn.2014.7.1.9
55. Prava R. Seru G. Sama JR. Siddanadham AS. Separation and determination of process- related impurities of clopidogrel bisulphate by RP-HPLC. World Journal of Pharmaceutical and Life Sciences. 2017; 3(1): 110-130.
56. Jadhav SB. Tamboli AM. Khan NI. Ansari AM. Manure JY. Determination of ClopidogrelBisulphate in Pharmaceutical Dosage Form by RP –HPLC. Inventi Rapid: Pharm Analysis &Quality Assurance. 2013; 2: 1-3.
57. Sajjanwar R. Jitendra R. Bhaskaran S. Kakati K. Kumar S. A validated reverse phase hplc method for the simultaneous estimation of clopidogrel bisulfate and rivaroxaban in pharmaceutical application. Neliti.com. December 8. 2023. https://media.neliti.com/media/publications/320058-a-validated-reverse-phase-hplc-method-fo-ad2d5620.pdf
58. Pimpale A. Kakde R. Development and validation for simultaneous estimation of rosuvastatin calcium and clopidogrel bisulfate in pharmaceutical dosage form by reverse phase-high performance liquid chromatography. International Journal of Pharmacy and Biological Sciences. 2020. https://doi.org/10.21276/ijpbs.2020.10.2.36
59. Panda SS. Ion-Pairing RP-HPLC Method for Simultaneous determination of Aspirin and Clopidogrel bisulphate in Tablet and Capsule Dosage Form. 2003.
60. Palatheeya S. Rao KH. RaoBV. A Modified stability Indicating liquid Chromatographic method Development and validation for the Estimation of clopidogrel and Rosuvastatin in bulk and Tablet Dosage Forms. Research Journal of Pharmacy and Technology. 2020; 13(3). 1324. https://doi.org/10.5958/0974-360x.2020.00244.9
61. Al Masud A. Begum I. Development and validation of an RP HPLC method for simultaneous estimation of aspirin and clopidogrel in combined tablet dosage form. 2020. https://doi.org/10.13040/IJPSR.0975
62. Anandakumar K. Ayyappan T. Raghu RV. Vetrichelvan T. SankarASK. Nagavalli D. RP-HPLC analysis of aspirin and clopidogrel bisulphate in combination. Indian Journal of Pharmaceutical Sciences. 2007; 69(4); 597. https://doi.org/10.4103/0250-474x.36958
63. Alarfaj NA. Stability-indicating liquid chromatography for determination of clopidogrel bisulfate in tablets: Application to content uniformity testing. Journal of Saudi Chemical Society. 2012; 16(1); 23–30. https://doi.org/10.1016/j.jscs.2010.10.016
64. Mounika A. Sriram A. Method development and validation of clopidogrel bisulfate by reverse phase-HPLC in bulk and pharmaceutical dosage formed. International Journal of Pharmacy and Analytical Research. Dec 2012.
65. Rele RV. Advancedreverse-phasehigh-performance liquid chromatography method for determination of clopidogrel in pharmaceutical formulation. JOCPR.com.December 9, 2023;https://www.jocpr.com/articles/advance-reverse-phase-high-performance-liquid-chromatography-method-for-determination-of-clopidogrel-in-pharmaceutical-f.pdf
66. Bari SB. Patil MS. International Journal Corner. July 2013; Volume 2. Issue 7. https://www.internationaljournalcorner.com/index.php/ijird_ojs/issue/view/8155
67. Sivarama KV. Ravi KD. Balamuralikrishna K. Rambabu C. Development and validation of stability indicating RP-HPLC method for the determination of clopidogrel bisulphate in bulk and its dosage forms. Derpharmachemica.com. December 9. 2023.https://www.derpharmachemica.com/pharma-chemica/development-and-validation-of-stability-indicating-rphplc-method-for-the-determination-of-clopidogrel-bisulphate-in-bulk.pdf
68. Article.Ijcrr.com. December 9. 2023.https://ijcrr.com/article_html.php?did=2246
69. Venkateswararao Y. Sujana K. A novel stability indicating RP-hplc method development and validation for the determination of clopidogrel in bulk and its dosage forms. IJPRT.org. December 9, 2023. https://www.ijprt.org/index.php/pub/article/download/103/100
70. Shinde DR. LawareRB.DigheSB. Deodhe AV. Development and validation of a RP HPLC method for estimation of Clopidogrel and Aspirin in bulk and in pharmaceutical dosage form. World Journal of Pharmaceutical Research. https://doi.org/10.20959/wjpr20203-16857
71. Kurien J. Jayasekhar P. A validated hptlc method for the determination of clopidogrel in pharmaceutical dosage forms. World Journal of Pharmacy and Pharmaceutical Sciences. 2014; 3; 1244-1252.
72. Agrawal H. Stability indicating HPTLC determination of clopidogrel bisulphate as bulk drug and in pharmaceutical dosage form. Talanta. 2003; 61(5); 581–589. https://doi.org/10.1016/s0039-9140(03)00364-3
73. Patel RB. ShankarMB. PatelMR. BhattKK. Simultaneous estimation of acetylsalicylic acid and clopidogrel bisulfate in pure powder and tablet formulations by high-performance column liquid chromatography and high-performance thin-layer chromatography. Journal of AOAC International. 2008; 91(4);750–755. https://doi.org/10.1093/jaoac/91.4.750
74. Narwate BM. GhulePJ. MohitePB. UgaleRB. A high-performance thin layer chromatographic determination of clopidogrel bisulphate in tablets. Journal of Pharmaceutical Research. 2009; 8(4). 211. https://doi.org/10.18579/jpcrkc/2009/8/4/79707
75. Housheh S. TrefiS. & هارون, محمد. Chehna MF. A novel GC-MS for the determination of Clopidogrel bisulfate in bulk and pharmaceutical dosage forms. Journal of Chemical and Pharmaceutical Sciences. 2014;7; 312-316.
76. Liu G. Dong C. ShenW. Lu X. Zhang M. Gui Y. Zhou Q. & Yu C. Development and validation of an HPLC–MS/MS method to determine clopidogrel in human plasma. Acta Pharmaceutica Sinica. 2016; B, 6(1), 55–63. https://doi.org/10.1016/j.apsb.2015.11.001
77. He J. Liu W. Zhang Y. Zhang Z. Tian Y. Development and validation of a LC-MS/MS method for the enantioseparation and determination of clopidogrel bisulfate in beagle plasma and its application to a stereoselective pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis. 2021;196; 113901. https://doi.org/10.1016/j.jpba.2021.113901
78. El-Sadek MEH. Moustafa SM. Kadi HO. Al-Hakami AMA. Determination of clopidogrel carboxylic acid in human plasma by LC-MS/MS. American Journal of Analytical Chemistry. 2011: 02(04); 447–455. https://doi.org/10.4236/ajac.2011.24054
79. MashelkarUC.Renapurkar SD. A LCMS Compatible Stability-Indicating HPLC Assay Method for Clopidogrel bisulphate. Sphinxsai.com. December 14. 2023.https://sphinxsai.com/s_v2_n2/CT_V.2No.2/ChemTech_Vol_2No.2_pdf/CT=10%20(822-829).pdf
|
Received on 20.01.2024 Revised on 12.04.2024 Accepted on 18.06.2024 Published on 10.12.2024 Available online on December 30, 2024 Asian Journal of Pharmaceutical Analysis. 2024; 14(4):266-274. DOI: 10.52711/2231-5675.2024.00048 ©Asian Pharma Press All Right Reserved
|